A REDEFINED σ^+ -VALUE FOR THE <u>META</u>-NITRO SUBSTITUENT By H.B. Amin and R. Taylor^{*}

School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex, England.

(Received in UK 21 November 1977; accepted for publication 24 November 1977)

From kinetic studies of gas-phase pyrolysis of 1-arylethyl acetates (I, R = Me) we have found¹ that in general there is an excellent correlation of

$$\begin{array}{ccc} \text{Ar.CH.CH}_3 & \stackrel{\Delta}{\longrightarrow} & \text{ArCH=CH}_2 + \text{RCOOH} \\ \text{OCOR} \end{array}$$

(1)

log $\underline{k}_{rel.}$ for the elimination \underline{vs} . σ^+ -constants defined from the solvolysis of 2-aryl-2-chloropropanes²; ρ is -0.66 at 600K. Exceptions have been the data for the <u>m</u>-Ph¹, <u>m</u>-CF₃³, <u>m</u>-Me⁴, <u>m</u>- and <u>p</u>-SiMe₃⁵ substituents for which σ^+ - constants of 0, 0.565, -0.098, -0.165 and -0.09, respectively, are required. It is noteworthy that these values give a better correlation of <u>all</u> electrophilic substitution and related data than do the original values defined from the solvolysis.

In the above work, kinetic studies of the rate of elimination of the \underline{m} -NO₂ ester were complicated by secondary decomposition which occurs at the temperature of the elimination. However, this is not the case for pyrolysis of the more reactive 1-arylethyl phenyl carbonates (I,R = OPh) which gives, with the exception of the \underline{m} -nitro ester, an excellent correlation of log \underline{k}_{rel} with σ^+ - values with ρ = -0.84 at 600K. Correlation of the \underline{m} -NO₂ data requires a

267

No. 3

 σ^+ -value of 0.73 (<u>cf</u>. the literature value of 0.674²). A similar deviation of the log <u>k</u>rel. value for the <u>m</u>-NO₂ substituent is apparent from the data of Smith <u>et al.</u>⁶ for pyrolysis of 1-arylethyl methyl carbonates. Their data require a log $f_{\underline{m}}^{NO_2}/\log f_{\underline{p}}^{NO_2}$ value of 0.92 (<u>cf</u>. 0.94 from our results) whereas the existing σ^+ -values predict a ratio of 0.85; data for pyrolysis of 1-arylethyl benzoates⁷ also predict a high ratio. Since the pyrolysis of esters does not involve extrapolations, assumptions, corrections, the use of overlap techniques, or interference from steric hindrance to solvation⁸ (all of which are involved in obtaining the literature value) we believe the latter to be in error. This view is reinforced by the following observations:

(i) Since the <u>m</u>-NO₂ substituent cannot supply electrons conjugatively, its σ^+ -value (0.674) should not be less positive than its σ -value (0.71). For the <u>para</u> substituent the corresponding values are 0.79 and 0.778, these differences merely reflecting small errors in establishing the ρ -factor for solvolysis of 2-aryl-2-chloropropanes on a scale relative to that for ionisation of benzoic acids. This discrepancy only should be manifest in the <u>meta</u> value <u>i.e</u>. $\sigma^+_{\underline{m}-NO_2}$ should be slightly more positive than 0.71, as is the case for the value defined by the pyrolysis.

(ii) Of the <u>meta</u> substituents which have a dipolar double bond and for which σ - and σ^+ -values are available <u>viz</u>. COOEt², CN², COCH₃⁹, and NO₂², only the latter substituent shows a significant difference between the <u>meta</u> values. (iii) A recent statistical analysis of the Hammett equation also shows that the $\sigma_{m-NO_2}^+$ value is anomalous.¹⁰

(iv) The literature value of 0.674 does not satisfactorily correlate any solution data! In protiode-silylation and -degermylation the values of $\log \frac{f_{m}^{NO_2}}{p} \log \frac{f_{p}^{NO_2}}{p}$ are 0.89 and 0.91, respectively,¹¹ so that relative to the $\sigma_{p-NO_2}^+$ value of 0.79, the σ_{m-NO_2} values required to correlate the data are 0.705 and 0.715, respectively. With the literature σ^+ -value, the m-NO₂ substituent deviated from the linear free energy correlation of the other data,¹¹ but this deviation was apparently removed by use of the Yukawa-Tsuno equation.¹² This improvement in correlation is however fortuitous, for if the difference in the σ^- and σ^+ -values is an experimental error rather than real, then use

268

No. 3

of this equation automatically diminishes the error. With our new value the correlation of the demetallation data for the <u>m</u>-NO₂ substituent is improved regardless of whether one uses the Hammett-Brown or Yukawa-Tsuno equations. In positive bromination (by HOBr)¹³ for which $\rho = -6.2$, $\frac{f}{m}^{NO_2} = 4.8 \times 10^{-5}$ so the σ^+ -value required here is 0.70.

The only other reaction of this type in which the effect of the \underline{m} -NO₂ substituent has been reliably measured is the decomposition of $\underline{\omega}$ -diazoaceto-phenones.¹⁴ Here the ratio of log $\underline{f}_{\underline{m}}^{NO_2}/\log \underline{f}_{\underline{p}}^{NO_2}$ is 0.89 so the σ^+ -value needed for \underline{m} -NO₂ is 0.70. (On the paper describing this work the correlation with the existing σ^+ -value for \underline{m} -NO₂ appears to be excellent, but this is because the point is mis-plotted).

The present data provide further evidence that the pyrolysis of 1-arylethyl esters is a better model for determination of electrophilic substituent constants than is the solvolysis of 2-aryl-2-chloropropanes. In addition to the inadequacies of the latter noted above, kinetic studies usually cannot be carried out on the pure isolated compounds because of the ease with which they eliminate HCl; thus no physical characteristics were reported for either the meta- or para- nitro compounds in ref.15.

References

- 1. R. Taylor and G.G. Smith, Tetrahedron, 1963, 19, 937.
- L.M. Stock and H.C. Brown, <u>Advances in Physical Organic Chemistry</u>, 1963, <u>1</u>, 35.
- 3. R. Taylor, J. Chem. Soc. (B), 1971, 622.
- 4. E. Glyde and R. Taylor, J.C.S. Perkin II, 1975, 1463.
- 5. E. Glyde and R. Taylor, J.C.S. Perkin II, 1973, 1632.
- G.G. Smith, K.K. Lum, J.A. Kirby, and J. Posposil, <u>J. Org. Chem</u>., 1969, <u>34</u>, 2081.
- 7. H.B. Amin and R. Taylor, unpublished work.
- 8. See E. Glyde and R. Taylor, <u>J.C.S. Perkin II</u>, 1977, 678 for discussion of the importance of this latter point.
- 9. R.L. Dannley and R.V. Hoffman, J. Org. Chem., 1975, 40, 2426.
- 10. M. Sjöström and S. Wold, Chem. Scripta, 1974, 6, 115.
- C. Eaborn and K.C. Pande, <u>J. Chem. Soc.</u>, 1961, 5082; C. Eaborn and P.M. Jackson, J. Chem. Soc. (B), 1969, 21.
- 12. Y. Yukawa and Y. Tsuno, Bull. Chem. Soc. Japan, 1959, 32, 971.
- 13. P.B.D. de la Mare and I.C. Hilton, <u>J. Chem. Soc</u>., 1962, 997.
- 14. Y. Ysuno, T. Ibata and Y. Yukawa, Bull. Chem. Soc. Japan, 1959, 32, 960.
- 15. Y. Okamoto and H.C. Brown, J. Am. Chem. Soc., 1957, 79, 1909.